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In this paper, the influence of a third body—the single particles of the plasma—on the rate of
nuclear reactions in the interior of the sun is calculated using a semiclassical approach. The results
suggest that increases ranging from 2% to 8% are possible for the rate of nuclear reactions in the

solar core. The implications of these results for solar neutrino detectors is estimated.
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I. INTRODUCTION

Nuclear reactions in plasmas in stellar interiors are the
main source of stellar energy. As a rule, the average
kinetic energy of the light nuclei in the star interior is well
below the height of the Coulomb barrier for the nuclear
interaction. The cross section for nuclear fusion reaction
is determined by a product of two factors. The first, the
nuclear rection constant, has a weak energy dependence
far from resonances, while the second, the penetration
factor, is extremely sensitive to the ion kinetic energy
and the features of Coulomb potential in the sub-barrier
region.

In the solar interior, nuclear reactions proceed in the
presence of a plasma of ions and electrons and one ex-
pects the plasma, because of screening and other effects,
to influence the rate at which nuclear reactions occur. A
number of people have studied the effect of the plasma
environment on the rate of nuclear reactions ever since
the pioneering work of Salpeter [1]. Calculation of nu-
clear reaction rates in dense plasmas have been carried
out by Salpeter and Van Horn [2], Itoh, Totsuji, and
Ichimaru (3], Mitler [4], Carraro, Schafer, and Koonin
[5], Schramm and Koonin [6], and a number of other au-
thors. A good review of this field is to be found in an
article written by Ichimaru [7], which contains many ref-
erences to original papers by other authors.

The rate of nuclear reactions between nuclear species
labeled ¢ and j is controlled by the effective potential
between the nuclei at short distances. This potential,
which if the nuclei were in free space would be entirely
Coulomb in nature, is modified by the presence of the
plasma. One of the most important contributors to this
change in the potential is the screening effect due to the
plasma electrons. Another important contributor is the
many-body correlations that may be present in dense
plasmas. The effects of the screening of the Coulomb
potential by the plasma electrons have been studied in
Refs. [1,2,5,8,9]. Salpeter 1], in the earliest of such stud-
ies, showed that the screening effects calculated in the
adiabatic approximation where the electrons readily fol-
low the motion of the ions increase the reaction rate be-
tween the nuclear species. Carraro et al. [5] showed that
the screening effects are less than in the work of Salpeter
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[1] due to imperfect screening by the ions. The adiabatic
approximation is not good for the ions, which by virtue
of their large mass are not able to follow the motion of
the reacting particles as readily as the electrons. In this
work the dynamic effects of screening are also included
in which plasma oscillations are excited in the plasma.
In the work of DeWitt et al. [8,9] expressions for screen-
ing effects under a number of conditions are given. The
size of the enhancement of the rate of nuclear reactions
due to these effects is of the order of no more than a
few percent. For the most important reaction in the sun,
namely, P+ P — D + et + v, Ichimaru [7] has given an
enhancement by 2.2% due to weak electron screening in
the solar core and 4.8% due to many-body correlations
among electron screened protons.

Modifications of the internuclear potential at short dis-
tances due to the nuclear reaction taking place in solids
have also been studied [10]. Even the effects of including
vacuum polarization on the PP reaction rate have been
studied [11].

An effect that has apparently not been considered so
far is the effect of a third particle, a plasma ion or an
electron, influencing the nuclear reaction rate through
inelastic collisions between the reacting pair and the third
particle. It is the object of this paper to consider this
process in a semiclassical approach.

The mechanism of the excitations we are considering
is rather simple. In the initial stages prior to the nu-
clear reaction, the two charged particles move in the
Coulomb field produced by the plasma particles. Due
to this Coulomb interaction the relative motion of the
two nuclear reacting particles is nonuniform. The elec-
tromagnetic field generated by these particles depends on
time. This field may excite or deexcite the single-particle
states of the plasma. The excitation or deexcitation of
the plasma particles leads to a loss of energy or a gain of
energy for the reacting particles. On the average, if dur-
ing the collision with the plasma particles the probability
for energy gain and loss are equal, the mean of the energy
exchanged will be zero and as a result, the relative energy
at which the nuclear reaction proceeds will remain un-
changed. However, the mean of the square of the energy
exchanged will not be zero. Such a mean square term will
have the effect of giving a spread to the relative energy at
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which the nuclear reaction proceeds. These fluctuations
in energy have a nonsymmetrical effect on the rate of the
nuclear reaction between the reacting particles. When
the fluctuation results in an increase in the relative en-
ergy of the reacting particles, the penetration factor will
increase significantly and the reaction rate will be in-
creased significantly. On the other hand, if the relative
energy of the reacting particles is decreased due to the
fluctuation, the already small penetration factor will be
further reduced and hence will have a negligible effect
on the rate of the nuclear reaction. The enhancement of
the nuclear reaction rate due to these fluctuations arises
directly from the interaction of a third body, the plasma
electron or ion, with the two particles about to undergo
a nuclear reaction. The effect of this additional enhance-
ment so far has not been taken into account in arriving
at the temperature of the Maxwellian distribution of the
plasma ions and electrons.

In the present work we carry out a semiclassical in-
vestigation of the effect on nuclear reactions caused by
the excitation of single electrons and ions in a neutral
Maxwellian plasma. We use a classical description for the
motion of the reacting particles in their mutual Coulomb
field and calculate the probability of energy and momen-
tum exchange with a plasma particle due to the Coulomb
interaction of the plasma particle with the reacting pair.
This mutual interaction of the plasma particles with the
reacting particles is the source of the fields responsible for
the excitation. The probability for the excitation of sin-
gle electron and ion has been calculated using first-order
quantum mechanical perturbation theory. It is found
that the ions of the plasma, rather than the electrons
of the plasma, are most effective in the energy exchange
process with the reacting particles (due to the large mass
of the ions) and give the most contribution to the change
in the penetration factor.

II. GENERAL FORMALISM

Let us consider nuclear reaction between particles 1
and 2 embedded in a neutral Maxwellian plasma. The
rate of nuclear reactions is defined by the quantity (ov),

R=(ov)=C fo / dvF(V) / dES(E)Po(E)
x exp (—E/kT), (1)

where C is the normalization constant for the Maxwell
distribution, fq is a screening factor, S(FE) is a smooth
function of energy, Po(F) is the penetration factor

Po(E) = exp [-2mn(E)],

_ Z]_ZzCl,Ll/2

E) = 2192t
(&) 137(2E)Y%’
u is the reduced mass, Z; and Z, are the charge numbers
of the two particles 1 and 2, E is the energy of relative
motion of the two particles 1 and 2, and f(V) is the
Maxwellian distribution for the center of mass velocity
of the two reacting particles 1 and 2.

The formula (1) is usually used in the investigations
of nuclear reactions in stars. It is assumed that the en-
ergy of the particle occurring in the Maxwell distribution
Cexp (—E/kT) and the energy F in the penetration fac-
tor Po(E) is the same energy. In general, this may not be
true, as mentioned earlier, due to the possibility of energy
exchange between the reacting particles and the plasma
particles in the initial stages of the nuclear reaction.

The actual penetration factor P(E) that is to be used
in this expression should be the penetration factor aver-
aged over the probability distribution p(E,§) for the re-
acting particles at relative energy E to exchange energy
of an amount § with the plasma particle. This probabil-
ity distribution is explicitly calculated in Sec. IIT below.
Let the sign of § be positive for a gain of energy and neg-
ative for a loss of energy. This function p(E,§) allows us
to find out the average penetration factor through

P(E) = w(B) [ dbp(B.0)exp[-2mn(E +9)], ()
where
k1B = / d6p(E, 5).

Use of formula (2) leads us to modification of (1) to

(ov) =C fO/dI?f(V)/dE S(E) P(E)
x exp (—E/kT). (3)

The penetration factor falls exponentially with de-
creasing particle energy while the Maxwell distribution
extends to energies much larger than k7. Typically,
one should integrate over E from kT to several times
kT. Since the local deviation from thermal equilibrium
is small, the range of energy transfer must be relatively
small, that is, |§|/kT < 1 and therefore |§|/E <« 1. Then
we can represent P(E) as a series expansion in §/F using

é
—2nn(E—§) ~ —2nn(E) 1—29 E)—
¢ ¢ [ ™(E)35

+i2mn(B)) (ﬁ%)] (4)

To terms of second order in §/FE, we get

(ov) = (0v)° + (ov)} + (Gv)? + - -, (5)

where
(0 =C fo [aV1(v) [ aBSE)Po(E)
x exp (—E/kT), (6)

2mn(E)

(ov)' ==C fo / dvV (V) / dES(E)Po(E) =~

x8 exp (—E/kT), (7)
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(0v)2 = C fo / av £ (V) / dES(E)PO(E)%
x % exp (—E/kT), (8)
where
§n = / d58™p(E, 5). 9)

For reactions with E in the sub-barrier region, the factor
2nn(E) > 1. Thus the small values of §/F are somewhat
compensated by factors of 2mn(E).

One can expect that in thermodynamic equilibrium the
average exchange of energy 6 must be small. This expec-
tation is realized if the probabilities to gain or to lose
energy ¢ are approximately equal. The small value of §
does not, however, require that 62 be small. If we as-
sume that 6 = 0, then the correction to the reaction rate
will only be positive. The energy exchange between the
reacting particles and the plasma particles will tend to
increase the nuclear reaction rate.

The total correction to R = (ov) can be written

R = (ov) = (0v)°(1+ AR), (10)

where the correction AR is
AR = ((av)")-1<c fo/de(V)/dES(E)PO(E)

[27n(E)]

x exp (—E/kT) 2E)

F(E)>, (11)
where

= an(E)|? 62
F(E) = <—5 + %—2—) . (12)

III. EXCITATIONS OF THE PLASMA

Let two nuclear particles with the charges Z;e and Zse
and the masses M; and M, collide against one another.
The Coulomb interaction between the particles begins
when the relative distance between the particles becomes
less than a distance b of the order of the screening radius
ap (the Debye length). This distance b is then a param-
eter of the model. Since the only distance scale available
in the plasma is the Debye length, we take the distance at
which the interaction with the plasma begins to be the
Debye length ap. The magnitude of the correction we
calculate depends somewhat sensitively on this parame-
ter b and increases with an increase in b. If this parameter
is chosen too large, we will no longer be able to apply the
expansion in §/E carried out in Sec. II in evaluating the
penetration factor. Another relevant consideration is the
mean free path for ion-ion collisions in the plasma that
is of the order of several Debye lengths. The parameter
b must not be larger than the mean free path for ion-ion

collisions. From these considerations we take this pa-
rameter to be the Debye length b = ap. In a proper
calculation, using kinetic equations for the description
of the plasma, this parameter would be determined self-
consistently. In the absence of such a detailed treatment,
it seems reasonable to assume that this distance is the
Debye length ap.

Let the relative kinetic energy of the particles 1 and
2 be E at relative distances » > ap. Let us consider as
initial time ¢ = —7 the moment when the relative dis-
tance between the particles becomes ap. Let the time
at which the reacting particles reach the turning point
r = Z1Z2¢%/E be t = 0. We use pure Coulomb poten-
tial to describe the long distance interaction between the
reacting particles.

Let us consider the energy exchange between the react-
ing particles 1 and 2 (coordinates 7; and 72, respectively)
and the plasma environment prior to their undergoing the
nuclear reaction. To get at this, we write, first of all, the
potential created by particles at 77 and 75, at the point
7; in the plasma where a plasma particle i is located as

¢(ﬁ-)=( Te e ) (13)

17 =7 ()] |75 = 72(2)]

Let us transform to the c.m. frame of particles 1 and 2
and the relative coordinate (),

B= M7 + M7

ST 0 T -

In terms of these coordinates, we get

Z1€
— R(t) — m7(t)|

Zz& ), (15)

+ — ~ —
|75 — R(t) + p27(t)|

where we have introduced p; = My/(M; + M3) and pp =
M, /(M; + Ma).

As we have mentioned before, the energy exchange may
take place when the two-particle relative distance |7] is
in the range ap > r > 0. Therefore, inside this interval
the perturbing potential energy may be taken to be, if
the plasma particle has charge Z; and mass M;,

W (7, 7(t)) = Zie[¢(7i, ™) — (7%, ap)]. (16)

The time dependence of W is determined by the time
dependence of the relative coordinate 7(t). The classical
solution 7(t) for the two-body problem under their mu-
tual Coulomb interaction is well known and we take it
from Landau and Lifshitz [12]. Due to the dependence
of 7 on time, considering nuclear reactions in a neutral
Maxwellian plasma, it is possible to excite two types of
plasma excitations: the single electron or ion excitations
and the coherent plasmon excitations. The contribution
of plasmon excitation to the penetration factor has al-
ready been evaluated by Carraro et al. [5] and our re-
sults agree with theirs and therefore we do not consider
it any further. Below we only consider the single-particle

B(7:, (1)) = (w
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excitations in the plasma. Contributions of these to the
nuclear rection rate will be estimated below.

We use (15) to estimate the probability of the excita-
tion of the plasma single-particle states. In the first-order
perturbation theory of quantum mechanics one can write

p(E,wys) = /_ WA rtarl ()

where ¢ and f label the quantum numbers of the initial
and the final plasma single-particle states Aws; = § =
(Ef — E;) and E; and Ej are the plasma particle ini-
tial and final energies of the reacting pair (1,2). Thus
0 = hwy; is the energy transfer to the plasma particle.
p(E,wy;) is the probability of the transition from the
state ¢ to the state f. _

Using p(E,wy;), one can calculate 6

8 = (hwg)"p(B,wys). (18)
f

For transitions to f in the continuum, the sum in (17)
must be replaced by an integral over dE; and p(E,wy;)

dp(E,wgi)

The perturbing potential W (7, 7(t)) has an effect only
during a finite time interval. In this case, in order to
avoid numerical problems associated with subtraction in
formula (16), we have integrated (17) by parts and get
the equivalent formula given by Landau and Lifshitz [13]

1

2
/0 d(fIW(”_{w F(t))|1’> ei“’f"tdt
o di

(19)
To get an explicit expression for the potential
W (7;,7(t)) we use the parametric equations that de-
scribe the motion of charge Z; with the reduced mass
# in Coulomb field of the charge Z5 [12]
z = a(e+cosh§), y=a(e? —1)sinh¢
and

t = To(esinh & + &).

Here

E is the relative kinetic energy of the reacting particles
and L is the orbital angular momentum. For a reaction
of nuclear fusion, the impact parameter is of the order of
the nuclear radius and one can assume that the angular
momentum L = 0 and therefore ¢ = 1. We also assume

that the center of mass coordinate moves with a constant
velocity V.

IV. SINGLE-PARTICLE EXCITATIONS
IN THE PLASMA

Let us first consider the excitation of single-particle
states by the potential W (7;,7), where each of the par-
ticles has a charge Z; and mass M;. In the case of a
Maxwellian plasma, the average kinetic energy of the re-
acting particles is larger than the average potential en-
ergy for the reacting particle-plasma-particle interaction.
Thus we will calculate this effect in the first Born approx-
imation and use plane waves for the plasma particle wave
functions

|f) = ™
and
|3) = [par, (E:i)] /P eiPifs
where ppr, (E;)dp; is the Maxwell distribution

1
N
(2mkT)3/2

x exp(—E;/kT)V2E;/*dE; dQ;.  (20)

pum; (Es)dp; =

Here N; is the particle density for the particle type 7, the
2
volume of the system is taken to be unity, F; = ﬁ‘;!f, and
dQQ; is the element of solid angle for p;. The integration
over 7; with the plasma particle wave functions gives us

(0]

FIW (7, i) = / de eIV (e), (21)

where

Viit) = paa, (B)o(q?) [ RO (2,6 T 4 Z,emimad )

_ eié'-ﬁ(i)(zleﬁmé‘r‘o + Zze—iuzé"?u)] (22)
and where
An Z;e?
v(g?) = Z

q‘ = (ﬁf - ﬁ)/h»
and 7p is a vector with magnitude ap and direction of the

vector 7. Following Landau and Lifshitz [13], the transi-
tion amplitude ay;(0) in first-order perturbation theory

is
0 twgit

6Vf, e'wri
:(0) = hAS Ly 'y 23
a0 = [ E (23)
After carrying out the ¢ differentiation of Vy; and assum-
ing R(t) = Ro + V't we can write

jeid Ro : I
afi(o) = "Mng(qz)V(qr, q- V,Wf,;), (24)

where ¢, is the component of ¢ in the direction of # and
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V(gr, @V +wyp) = /dte"(“f-‘+‘T‘7)t{(zwle-iu@;

dr
dt
+(- V)21 (e#97
+ Zz(e—iuzq‘i‘ — e~ i#2ddp )]} (25)

For transitions to f in the continuum, we have

—Zape 77

— etMddp )

2_dP,
25O Grys- (26)

For evaluating this, we use Eq. (20) and write dpy as

dp(E,wf,-) =

= V2M}/*E}*dEsdQy,

where d(; is the solid angle element in the direction of
the vector py. Using the initial direction of 7 as the 2
axis, we have

gr =¢q-7 =pj cosfy —p; cosb;
and

q*> = p? + p} — 2pipy cos by,
where

cos 0¢; = cosB; cos Oy + sinb; sin 5 cos(¢; — ¢py).

Here 6’s represent the respective polar angles and ¢’s the
respective azimuthal angles so that d€2; = sin 6,;d0;d¢;
and dQy = sinfydfsdeds. It is possible to carry out the
integrals over the azimuthal angles analytically. After
these are carried out on dp(FE,wy;) we obtain

- 2 (M; 1/2 2 _ 1/2
§ = 2N (Zie?a) \/>(52) (kT)s/z/dE B/ % E'/’“T/dEfE I25(E; — E; rwf,)/smo 6 sin 076y

(El/2 cosf; — Ef/2 cosbf)2(E; + Ef — 2,/E; Ef cos 05 cos 6;)

dp(B,ws;) _ (4nZie?)? 2N M;/*
dE; B2 (2mR)3(nkT)3/2

x / dE;E}M?
1]

x/ sin(9,~d0,-/ sin 05d0|V (g, w);|?
0 0

1 24
Xy . 27
“"szi (A2 — B2)3/2 (27)

1/2
Ey

Here we have used w}; = wy; +¢- v,
A= pf + p"} — 2p;ps cosB; cos by,
and
B = —2p;pssinb;sinfy.

Using this we obtain expressions for the mean energy loss
8 and the mean of the square of the energy loss §2

< dp(vafl)
5= / by P91 4 (28)
148, f
and
52 = /(hw )2‘1—"(%‘1’&)@,. (29)
f

Using the expression for ﬂTEE":L), we finally get the ex-

pressions for the mean energy loss and the mean of the
square of the energy loss as

fi

[(E + Efy —2,/E;E¢ cosfy cos0;)?

— 4E;E; sin® 0; sin® 64]3/2

1 (émax)?, (30)

- M, 1/2
8% = 2N;(Z;e a)z\/i ( ﬁz) (——-3—/2/dE B} ?e B /’“T/dEfEl/ZJ(E, —E; — rw,,)/smo df; sin 65d6

(E:/zcosa —E;/zcos%f) (E; +Ef—2,/EEfc030fc050)

[(E + Ef — 2,/E;Ef cosfy cos ;)2 — 4E; E sin’ §; sin® 6;]3/2

where I(€max) stands for the integral

0 S
I(€max) = /_ . dé expiw’s; Tos(€) [(_‘Qﬂ

a

1 (€max)|?, (31)

c(ﬁ){Zl (eimqrac(e) _ eil-llq'raD) + Zz(e—iuzqradﬁ) _ e—iuzqran)}

+ sinh&{plzlei“lq"“c(s) — ”zzze—iuzqrm:(f) }} . (32)
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Here c(§) = 1 + cosh§, s(€) = & + sinh§, €max is defined
by ap = a(1 + cosh€max), and Tp = \/“T“a.
Due to the factor q% in (25), most of the contribution

to the integrals (26), (29), and (30) comes from small
values of q. However, there is a minimum value for ¢; the
minimum corresponds to transferring the smallest wy;.
For |fwy;| < E;, we have

RqZin ﬁz‘”gz‘i + 463, E?
M, 2F; ’

The Debye screening limits gmin, by the condition g, =
1/ap. Thus we estimate that the important energy trans-
fers are of the order of [2E;%%/(M;a%)]*/2. For conditions
typical of the solar core, E; = 1.3k eV, 1/ap = 2.5 x 108
cm™1, and the energy transfer iwys; < 300 eV. The value
of the function |V (g,,wy;)|? reaches a maximum if the
condition p1¢,vo = w}; Or p2¢,vo = WY, is satisfied, where
vp is the reacting particle relative velocity at a distance of
separation equal to ap. Assuming the relative energy of
the reacting particles E=5 keV and E;=1.3 keV, we get
hwg; < 200 eV. Thus the condition |hwy;| < E; seems
to be satisfied. In the above equations we have also used
ps =~ pi[l+hwy;/(2E;)], in the numerical evaluations that
follow from the condition on E¢. Since these results are
proportional to p; = /2M; E;, it is clear that the excita-
tions of the electrons in the plasma are not as important
as the excitations of the positive ions of the plasma be-
cause of the v/M; factor. This fact is directly related to
the behavior of collision frequencies for electron-ion and
ion-ion collisions in a fully ionized plasma as a function
of the mass of the colliding particles.

V. DETAILS OF NUMERICAL CALCULATION

We carry out the calculation of the corrections to the
rate of the nuclear reactions due to interactions with
plasma ions for the processes

p+p, *He+3He, 3He+*He, p+" Be

in the core of sun. The following values of parameters
are used: kT = 1.3 keV, N; = 102® cm—3, hydrogen
abundance X = 0.7, and helium abundance Y = 0.3. We
take the Debye radius taking account of the electrons
4xN.e? 1/2
sy

only ap = ( For conditions appropriate to

the solar core, it has the numerical value 4 x 10~° cm.
If in defining the Debye radius the effect of the ions is
also taken into account, the numerical value turns out
to be about 20% smaller. As mentioned before, we take
Gmin = aBl. The minimum value of the relative distance
Tmin, the turning point for classical motion of the two
reacting particles, is rpmin = (Z1Z2€%)/E and therefore
we take gmax = 1/Tmin. The numerical value of this for
E = 8 keV is about 2 x 10710 ¢cm for Z; = Z, = 1.

One has to perform integrations over a number of vari-
ables in order to get numerical values for the correction
AR in Eq. (11). These variables are the variable £ [or
equivalently the time variable in Eq. (25)], the center of

mass velocity V' of the two reacting particles (Maxwellian
distribution), the relative energy E of the two reacting
particles, the initial energy E; (Maxwellian distribution)
of the ion %, the final energy E¢ of the ion, and the an-
gles 6; and 6¢. The center of mass velocity enters the
expression above only through the combination ¢ - V in
Eaq. (32). The frequency wy; appears in the combination

w}i = wy; + ¢V, which amounts to a Doppler shift of
the frequency due the motion of the center of mass. This
effect is clearly a small one because the magnitude of the
velocity of center of mass motion is so much smaller than
the magnitude of the relative velocity. Hence we have
adopted an approximate way in which to take this effect
into account. We assume that the center of mass velocity
has the most dominant component in the direction of the
initial relative position vector 7; then §-V = ¢,V and
we integrate over the restricted Maxwellian distribution
in the one-dimensional variable V. Then the integrations
over the other variables were carried out numerically fol-
lowing standard methods.

In an effort to get some feeling for the magnitude of
the correction A, one might consider evaluating 6 and
0% at one particular value of E; = kT of the Maxwellian
distribution. For this particular value of E; one finds that
d = 02/(2kT) holds numerically. The expression for AR
in (11) contains in its integrand the exponential factor
exp[—E/kT — 27n(F)] in addition to F(FE), depending
on a combination of § and §2. At the maximum for the
exponential factor that occurs at E = E;, where Ef 2=
2w Z1 Zrc\/ukT /(2 x 137y/2), the factor in parentheses
vanishes for E = E;. Thus, in the integration over E (if
the Maxwellian was replaced by a single energy E; = kT'),
the integrand is exactly zero at E = E;. It has opposite
signs for contributions to the integral for £ < E; and
for E > E;. Because of this, cancellations occur in the
evaluations of the integral in (11). For other values of E;
of the Maxwellian involved, similar cancellations occur
and therefore one has to be very careful in the evaluation
of these integrals numerically. Bearing this fact in mind,
we have carried out these numerical integrations paying
special attention to the cancellations.

In the first step of numerical calculation the quantities
|[I(émax)|? as a function of g., wys;, and V are stored.

In calculating § and 42, numerical integration over 80
values of E¢, over 50 values of 8;, and over 50 values
of 4 is carried out. Also 20 values of V are chosen.
For each value of 0; and 0 the momentum transfer g,
is calculated and the corresponding value of |I(£max)|? is
determined with an interpolation for the needed values
of g,. The integration over the collision relative energy £
and averaging over the Maxwellian distributions for FE;
are carried out over 20 values of energy each.

It turns out that the value of the integral (32) is rather
sensitive to the choice of the distance at which energy ex-
change with the plasma begins. Generally speaking, this
must be obtained from the self-consistent kinetic equa-
tions in the plasma. However, using ap for this distance,
we get a lower estimate for the value of the integral.

The results for 6 and 62 and AR are given in Tables
I and II, respectively, for each of the pairs of nuclear
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TABLE I. Dependence of various quantities as a function of the relative energy E of the re-
acting particles for plasma particles i=H,He for a fixed E; = kT. Column 2 gives the quantity
P = exp[2nn(E) — (E/kT)], columns 3-5 and 6-8 give, respectively, §, 42, and G(e) for the H
components and the He components of the plasma. Here G(E) stands for the integrand of the E

integral involved in the expression for AR, Eq. (11).

Plasma H component

Plasma He component

E (keV) P(x10%) & (keV) &2 (keV?) G(E) 5 (keV) 8% (keV?) G(E)
2 2.7 0.05 0.134 0.835 0.087 0.227 1.44
3 23 0.059 0.152 0.23 0.098 0.256 0.39
4 61 0.062 0.160 0.07 0.103 0.268 0.12
5 93 0.062 0.158 0.019 0.105 0.27 0.032
6 103 0.061 0.156 -0.0004 0.105 0.273 -0.0004
7 95 0.06 0.155 -0.008 0.105 0.273 -0.0132
8 76 0.06 0.155 -0.01 0.105 0.27 -0.018
9 55 0.06 0.155 -0.014 0.104 0.27 -0.02
10 37 0.06 0.155 -0.012 0.104 0.27 -0.015
11 24 0.06 0.155 -0.011 0.104 0.27 -0.014

reacting particles mentioned above, influenced by hydro-
gen and helium ions of the plasma. To see whether the
results obtained by us for the numerical values of § are
reasonable, we present an estimate for it following general
arguments on neutral Maxwellian plasma. In a neutral
plasma, the rate at which energy exchange between ions
occurs in the plasma is controlled by the mean free path
for ion-ion collisions [14]

(kT)?
47re4NiL’

where L is the Coulomb logarithm L = ln(@;’f—T). Using
values for N;,kT, mentioned earlier appropriate for the
solar core, we get

10~7
I~ ﬁ cm,
where Ze is the charge of one of the reacting particles
and Z'e is the charge of the plasma ion. The parameter
7 = l/v characterizes the relaxation time for the reacting
particle energy to relax to the equilibrium value. Using
this as a guide, we can estimate that during the passage of
the reacting particles through a relative distance ap, the
energy exchange  should be of the order § = “P E, where
E is the initial relative energy of the reacting particles.
Taking this energy to be about 5-6 keV, the amount of
energy exchange is roughly 100-300 eV. The numbers in
Table I for § are in good agreement with expectations

based on general arguments about the scale associated
with these energy exchanges and gives us confidence in
our numerical work.

VI. IMPLICATION OF THE RESULTS
FOR SOLAR NEUTRINO DETECTORS

The corrections to the rates of nuclear reaction in the
sun core are represented in Table II. One can see that the
effects of the energy exchange play a more important role
for the p + p reaction. The most probable energy of this
reaction is about of 6 MeV, while for the other reactions
considered this energy is 3—4 times larger. Therefore,
the relative contribution of the energy exchange with the
plasma particles for the p + p reaction (the typical scale
of energy transfer is of the order of a few hundred eV) is
larger in comparison with the other reactions.

The data of Table II do not answer one important
question, namely, what are the expected corrections to
the observed rates for solar neutrino detectors? Unfortu-
nately, the computer codes for the standard solar model
are not available to us, so we cannot carry out detailed
self-consistent calculations. However, using the results of
Turck-Chiéze and Lopes [15] and of Bahcall and Ulrich
[16], we can give two estimates for the effect of the in-
creased nuclear reaction rate on solar neutrino detectors.

First, let us use the work of Turck-Chiéze and Lopes
[15] for this estimate. These authors have considered the

TABLE II. Corrections to the rate of nuclear reactions in the solar core.

Contribution Contribution Total
Reaction type of the H component of the He component AR
(%) (%) (%)
p+p 3.3 4.7 8
3He + 3He 2.3 4 6.3
3He + “He 1 3 4
p+ "Be 0.8 1.5 2.3
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effects of variations in the rates of nuclear reactions in the
solar core on the theoretical predictions for the different
solar neutrino detectors. For example, the relations be-
tween the correction AS7; to the rate of p + p reaction
and the theoretical predictions for the observed neutrino
detector rates may be written

ARw = '"—1.6AS]_1,
ARG = —1.2A8:,,
ARG, = 0.54A8;,,

where ARw, ARc) and ARg, are the corrections to wa-
ter, chlorine, and gallium detectors, respectively.

The work of Turck-Chiéze and Lopes [15] allows us to
estimate the total correction to the expected rates from
all the considered reactions as

ARw = —10%, ARc = —8%, ARg. = 4%.

Second, let us use the work of Bachall and Ulrich [16].
They have given analytical formulas giving the fluxes of
pp, "Be, and ®B neutrinos as

q;(pp) ~ S?i14sg30353_‘10'06L%73(Z/X)_0'08 (A)-—0.07’

(P('fBe) ~ Sl—10.97s:;30.43sg‘.186L%4R%22(Z/X)0.58(A)1/3,

Q(SB) ~ 552'651;?30'452481S}’}OLgsR%48(Z/X)1/3(A)1/3,

where S1;, S33, S34, and S;7 are the rates for p + p,
3He+3He, 3He+%He, and p+"Be reactions, Lg, is the so-
lar luminosity, and R is the solar radius.

Assuming that Lg, Re, (Z/X), and the age A do not

depend on the rate of nuclear reactions, we get
A®(pp) = 1%, A®("Be) = —%, A®(*B) = —19%.

Using these data we can estimate the corrections to the
theoretical predictions for the solar neutrino detectors

ARw = —19%, ARc) = —16%, ARg, = —3%.

Indeed, we are showing these results as only qualitative
estimates. First of all, the analytical expressions of Bah-
call and Ulrich [16] may be applicable only for small vari-
ations of input values of the nuclear reaction rates, of the
order of 1%, and it may not be appropriate to estimate
the effect as we have done. Another point to be kept in
mind is that we should emphasize again that our descrip-
tion of the effect is a semiclassical one and in this a crucial
role is played by the choice of the distance at which en-
ergy exchange with the plasma starts to occur. Because
of these considerations we do not attempt a quantitative
comparison between theory and experiment. The pur-
pose of this work is only to draw attention to the pres-
ence of the energy exchange mechanism with the plasma
having an effect on the rates of nuclear reactions and
providing some estimate of the size of the effect. The
tendency of this effect of increase in the rate of nuclear
reactions seems to be particularly large for the p + p re-
action. As a result, the flux of “Be and ®B neutrinos
will decrease and the magnitude of this change can be as
much as 10%.
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